C++ IndyDCP3 Client
To use the IndyDCP3 client with C++, follow the steps below. This guide assumes that you have the appropriate development environment set up with C++17 or later.
Installation Requirements
- Requires CMake for project configuration and building.
- A C++ compiler that supports C++17 or later.
- IndyDCP3 library files and headers.
Installation Instructions
On Linux
1. Install gRPC
This gRPC installation guide for Linux is summarized from gRPC website. For more information, please visit grpc.io.
Choose a directory to hold locally installed packages. This page assumes that the environment variable MY_INSTALL_DIR holds this directory path. For example:
Ensure that the directory exists:Add the local bin folder to your path variable, for example:
Install CMake You need version 3.13 or later of cmake. Install it by following these instructions:
Check the version of cmake:On Linux, the system-wide CMake version might be outdated. To install a more recent version in your local installation directory, use:
wget -q -O cmake-linux.sh https://github.com/Kitware/CMake/releases/download/v3.19.6/cmake-3.19.6-Linux-x86_64.sh
sh cmake-linux.sh -- --skip-license --prefix=$MY_INSTALL_DIR
rm cmake-linux.sh
Install other required tools Install the basic tools required to build gRPC:
Clone the grpc repo and its submodules:
$ git clone --recurse-submodules -b v1.59.0 --depth 1 --shallow-submodules https://github.com/grpc/grpc
Build and Install gRPC and Protocol Buffers
gRPC applications often use Protocol Buffers for service definitions and data serialization, as in the example code that follows. To build and locally install gRPC and Protocol Buffers, run:
cd grpc
mkdir -p cmake/build
pushd cmake/build
cmake -DgRPC_INSTALL=ON \
-DgRPC_BUILD_TESTS=OFF \
-DCMAKE_INSTALL_PREFIX=$MY_INSTALL_DIR \
../..
make -j 4
make install
popd
Important
Note
It is strongly recommended to install gRPC locally with a properly set CMAKE_INSTALL_PREFIX, as there is no simple way to uninstall gRPC after a global installation.
2. Download and Build example
Clone the Example Repository
Navigate to the C++ Folder
Create and Enter the Build Directory
Run CMake Configuration and Build the Example
If you need to rebuild the .proto files, set -DBUILD_PROTO=ON. The build_proto executable file will be generated. After running this file, the generated proto files will be located in the proto/cpp_generated folder.C++ (On Windows)
It is recommended to use Visual Studio Code for this setup.
1. Setup your environment
Install Visual Studio Code - Install following extensions: C/C++, C/C++ Extension Pack and CMake Tools.
Install vs_BuildTools - In BuildTools option, please choose Desktop Development with C++ and Visual Studio extension development.
2. Install GRPC
When you are all set, please open Developer Command Prompt and run the following commands:
Create build folder
Configure and build using Cmake
cmake -G "Visual Studio 17 2022" -DCMAKE_BUILD_TYPE=Release -DCMAKE_CXX_STANDARD=17 -DBUILD_SHARED_LIBS=OFF -DABSL_PROPAGATE_CXX_STD=ON -DgRPC_INSTALL=ON -DgRPC_BUILD_TESTS=OFF -DCMAKE_INSTALL_PREFIX=..\..\..\install ../..
Build and install grpc
3. Download and Build example
Clone the Example Repository
Open Visual Studio Code and open neuromeka-package/cpp/ folder Config your build with settings.json in .vscode folder. If you need to rebuild the .proto files, set -DBUILD_PROTO=ON. The build_proto executable file will be generated.
Then, modify the CMakeList.txt. Change following lines to point to your grpc installation directory.
set(absl_DIR "E:/Example/install/lib/cmake/absl")
set(utf8_range_DIR "E:/Example/install/lib/cmake/utf8_range")
set(protobuf_DIR "E:/Example/install/cmake")
set(gRPC_DIR "E:/Example/install/lib/cmake/grpc")
Open Visual Studio Code Press Ctrl+Shift+P or go to View -> Command Palette to open the Command Palette, and choose the following commands: - CMake: Scan for kits: To scan for compilers on your computer. - CMake: Select a kit: To select a specific compiler (e.g., Visual Studio Build Tools 2022 Release - amd64).
When you are done, press the Build button at the bottom left.
Using IndyDCP3
To create a client object, include the IndyDCP3
class header from the IndyDCP3 library and initialize it with the robot's IP address.
#include "indydcp3.h"
int main() {
IndyDCP3 indy("192.168.xxx.xxx");
// Use the indy object to interact with the robot...
return 0;
}
192.168.xxx.xxx
: IP address of the robot controller.
Methods and Functions
Below is a list of protocol functions that can be called using the IndyDCP3 object. Please refer to the usage methods and input/output examples for each function.
Real-Time Data Acquisition Functions
You can retrieve the robot's current motion status, control data, state, servo motor state, error information, and program status.
Method | Description |
---|---|
get_robot_data() |
Robot status data |
get_control_state() |
Control state |
get_motion_data() |
Motion data |
get_servo_data() |
Servo data |
get_violation_data() |
Error data |
get_program_data() |
Robot program data |
get_robot_data()
Nrmk::IndyFramework::ControlData control_data;
bool is_success = indy.get_robot_data(control_data);
if (is_success) {
// Process control_data
}
{
'running_mins': 6,
'running_secs': 11,
'op_state': 5,
'sim_mode': true,
'ref_frame': [0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
'tool_frame': [0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
'running_hours': 0
}
running_hours
: Robot operating hoursrunning_mins
: Robot operating minutesrunning_secs
: Robot operating secondsop_state
: Robot state as defined in theOpState
classOpState
:SYSTEM_OFF(0)
,SYSTEM_ON(1)
,VIOLATE(2)
,RECOVER_HARD(3)
,RECOVER_SOFT(4)
,IDLE(5)
,MOVING(6)
,TEACHING(7)
,COLLISION(8)
,STOP_AND_OFF(9)
,COMPLIANCE(10)
,BRAKE_CONTROL(11)
,SYSTEM_RESET(12)
,SYSTEM_SWITCH(13)
,VIOLATE_HARD(15)
,MANUAL_RECOVER(16)
,TELE_OP(17)
get_control_state()
Nrmk::IndyFramework::ControlData control_data;
bool is_success = indy.get_control_state(control_data);
if (is_success) {
// Access joint positions
for (int i = 0; i < control_data.q_size(); i++) {
float joint_position = control_data.q(i);
}
}
{
'q': [...],
'qdot': [...],
'qddot': [...],
'qdes': [...],
'qdotdes': [...],
'qddotdes': [...],
'p': [...],
'pdot': [...],
'pddot': [...],
'pdes': [...],
'pdotdes': [...],
'pddotdes': [...],
'tau': [...],
'tau_act': [...],
'tau_ext': [...],
}
q
,qdot
,qddot
: Current positions (deg), velocities (deg/s), and accelerations (deg/s²) of each jointqdes
,qdotdes
,qddotdes
: Target positions (deg), velocities (deg/s), and accelerations (deg/s²) of each jointp
,pdot
,pddot
: Current workspace pose positions (mm), velocities (mm/s), and accelerations (mm/s²)pdes
,pdotdes
,pddotdes
: Target workspace pose positions (mm), velocities (mm/s), and accelerations (mm/s²)tau
,tau_act
,tau_ext
: Current input torques, actual torques, and external torques (Nm) for each joint
get_servo_data()
Nrmk::IndyFramework::ServoData servo_data;
bool is_success = indy.get_servo_data(servo_data);
if (is_success) {
std::vector<float> temperatures = servo_data.temperatures();
}
{
'status_codes': ['0x1237', '0x1237', '0x1237', '0x1237', '0x1237', '0x1237'],
'temperatures': [0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
'voltages': [48.0, 48.0, 48.0, 48.0, 48.0, 48.0],
'currents': [3.4812942e-18,
26.195215,
26.963966,
0.12320003,
0.55777645,
4.536144e-05],
'servo_actives': [true, true, true, true, true, true],
'brake_actives': [false, false, false, false, false, false]
}
status_codes
: Status codes (CiA402) for each joint servotemperatures
: Temperatures for each joint servovoltages
: Voltages for each joint servocurrents
: Currents for each joint servoservo_actives
: Activation state of each joint servo (true/false)brake_actives
: Activation state of the brakes for each joint servo (true/false)
get_violation_data()
Nrmk::IndyFramework::ViolationData violation_data;
bool is_success = indy.get_violation_data(violation_data);
if (is_success) {
int j_index = violation_data.j_index();
}
{
'j_index': 3,
'i_args': [2],
'f_args': [0.03445887],
'violation_str': 'Collision Detected: joint (4/6), Error threshold , val 0.0345',
'violation_code': '0'
}
j_index
: Index of the joint where the violation occurredi_args
: Integer information about the violationf_args
: Float information about the violationviolation_str
: Error message
get_program_data()
Nrmk::IndyFramework::ProgramData program_data;
bool is_success = indy.get_program_data(program_data);
if (is_success) {
std::string program_name = program_data.program_name();
}
{
'program_name': 'ProgramScripts/',
'program_state': 0,
'cmd_id': 0,
'sub_cmd_id': 0,
'running_hours': 0,
'running_mins': 0,
'running_secs': 0,
'program_alarm': '',
'program_annotation': ''
}
program_name
: Name of the currently running program fileprogram_state
: Program execution stateProgramState
:IDLE
(0),RUNNING
(1),PAUSING
(2),STOPPING
(3)
I/O Device Related Functions
I/O Device functions are used to interact with various robot hardware components like digital and analog I/O, end-tool I/O, and sensors.
Method | Description |
---|---|
get_di(DigitalList &data) |
Retrieves IO board DI data |
get_do(DigitalList &data) |
Retrieves IO board DO data |
set_do(const DigitalList &data) |
Sets IO board DO data |
get_ai(AnalogList &data) |
Retrieves IO board AI data |
get_ao(AnalogList &data) |
Retrieves IO board AO data |
set_ao(const AnalogList &data) |
Sets IO board AO data |
get_endtool_di(EndtoolSignalList &data) |
Retrieves end-tool DI data |
get_endtool_do(EndtoolSignalList &data) |
Retrieves end-tool DO data |
set_endtool_do(const EndtoolSignalList &data) |
Sets end-tool DO data |
get_endtool_ai(AnalogList &data) |
Retrieves end-tool AI data |
get_endtool_ao(AnalogList &data) |
Retrieves end-tool AO data |
get_device_info(DeviceInfo &data) |
Retrieves device information |
get_ft_sensor_data(FTSensorData &data) |
Retrieves end-tool F/T sensor data |
get_di()
Example
Nrmk::IndyFramework::DigitalList di_data;
bool is_success = indy.get_di(di_data);
if (is_success) {
for (int i = 0; i < di_data.signals_size(); ++i) {
std::cout << "DI " << i << " Address: " << di_data.signals(i).address()
<< ", State: " << di_data.signals(i).state() << std::endl;
}
}
set_do()
Example
Nrmk::IndyFramework::DigitalList do_signal_list;
auto *do_signal = do_signal_list.add_signals();
do_signal->set_address(1);
do_signal->set_state(Nrmk::IndyFramework::DigitalState::ON);
bool is_success = indy.set_do(do_signal_list);
if (is_success) {
std::cout << "Set DO successfully." << std::endl;
} else {
std::cerr << "Failed to set DO." << std::endl;
}
get_ai()
Example
Nrmk::IndyFramework::AnalogList ai_data;
bool is_success = indy.get_ai(ai_data);
if (is_success) {
for (int i = 0; i < ai_data.signals_size(); ++i) {
std::cout << "AI " << i << " Address: " << ai_data.signals(i).address()
<< ", Voltage: " << ai_data.signals(i).voltage() << std::endl;
}
}
Motion Command Functions
Motion command functions allow you to control the robot's movement, whether it's stopping, moving to specific positions, or executing complex motion paths.
Method | Description |
---|---|
stop_motion(StopCategory stop_category) |
Stops motion according to the specified stop category |
move_home() |
Moves the robot to the home position |
movej(const std::vector<float> jtarget, const int base_type, const int blending_type, const float blending_radius, const float vel_ratio, const float acc_ratio, const bool const_cond, const int cond_type, const int react_type, DCPDICond di_condition, DCPVarCond var_condition, const bool teaching_mode) |
Moves the robot to a specified joint target position |
movel(const std::array<float, 6> ttarget, const int base_type, const int blending_type, const float blending_radius, const float vel_ratio, const float acc_ratio, const bool const_cond, const int cond_type, const int react_type, DCPDICond di_condition, DCPVarCond var_condition, const bool teaching_mode) |
Moves the robot to a specified linear target position |
movec(const std::array<float, 6> tpos1, const std::array<float, 6> tpos2, const float angle, const int setting_type, const int move_type, const int base_type, const int blending_type, const float blending_radius, const float vel_ratio, const float acc_ratio, const bool const_cond, const int cond_type, const int react_type, DCPDICond di_condition, DCPVarCond var_condition, const bool teaching_mode) |
Moves the robot along a circular path |
start_teleop(TeleMethod method) |
Starts teleoperation mode |
stop_teleop() |
Ends teleoperation mode |
Warning
Be cautious when using motion commands, as the robot will move immediately if the command is successfully applied. While using the robot through the pendant allows movement only while the user is holding the touch button, using the API allows movement through program commands, so always ensure the area is clear of objects that could cause collisions. Especially, be mindful of safety if setting high speeds or accelerations, as the robot may move faster than expected.
stop_motion()
Example
This function stops the robot's motion according to the specified stop category.
StopCategory stop_category = StopCategory::SMOOTH_BRAKE;
bool is_success = indy.stop_motion(stop_category);
if (is_success) {
std::cout << "Motion stopped successfully." << std::endl;
} else {
std::cerr << "Failed to stop motion." << std::endl;
}
move_home()
Example
This function moves the robot to the predefined home position.
bool is_success = indy.move_home();
if (is_success) {
std::cout << "Robot moved to home position successfully." << std::endl;
} else {
std::cerr << "Failed to move robot to home position." << std::endl;
}
movej()
Example
This function moves the robot to a specified joint target position.
std::vector<float> target_joints = {0.0, 0.0, -90.0, 0.0, -90.0, 0.0};
bool is_success = indy.movej(target_joints);
if (is_success) {
std::cout << "MoveJ command executed successfully." << std::endl;
} else {
std::cerr << "MoveJ command failed." << std::endl;
}
movel()
Example
This function moves the robot to a specified linear target position in the workspace.
std::array<float, 6> target_pose = {350.0, -186.5, 522.0, -180.0, 0.0, 180.0};
bool is_success = indy.movel(target_pose);
if (is_success) {
std::cout << "MoveL command executed successfully." << std::endl;
} else {
std::cerr << "MoveL command failed." << std::endl;
}
movec()
Example
This function moves the robot along a circular path passing through two specified workspace positions.
std::array<float, 6> t_pos1 = {241.66, -51.11, 644.20, 0.0, 180.0, 23.3};
std::array<float, 6> t_pos2 = {401.53, -47.74, 647.50, 0.0, 180.0, 23.3};
float angle = 720.0;
bool is_success = indy.movec(tpos1, tpos2, angle);
if (is_success) {
std::cout << "Circular move executed successfully." << std::endl;
} else {
std::cerr << "Failed to execute circular move." << std::endl;
}
start_teleop()
Example
This function starts teleoperation mode with the specified method.
TeleMethod method = TeleMethod::TELE_JOINT_RELATIVE;
bool is_success = indy.start_teleop(method);
if (is_success) {
std::cout << "Teleoperation mode started successfully." << std::endl;
} else {
std::cerr << "Failed to start teleoperation mode." << std::endl;
}
stop_teleop()
Example
This function stops the teleoperation mode.
bool is_success = indy.stop_teleop();
if (is_success) {
std::cout << "Teleoperation mode stopped successfully." << std::endl;
} else {
std::cerr << "Failed to stop teleoperation mode." << std::endl;
}
Variable Handling Functions
The IndyDCP3 C++ API provides several functions to handle different types of variables, such as boolean, integer, float, joint position (JPos), and task position (TPos) variables. These variables can be used to exchange information between the robot and external devices.
Method | Description |
---|---|
get_bool_variable(std::vector<BoolVariable> &variables) |
Retrieves Bool type variables |
get_int_variable(std::vector<IntVariable> &variables) |
Retrieves Integer type variables |
get_float_variable(std::vector<FloatVariable> &variables) |
Retrieves Float type variables |
get_jpos_variable(std::vector<JPosVariable> &variables) |
Retrieves JPos type variables |
get_tpos_variable(std::vector<TPosVariable> &variables) |
Retrieves TPos type variables |
set_bool_variable(const std::vector<BoolVariable> &variables) |
Sets Bool type variables |
set_int_variable(const std::vector<IntVariable> &variables) |
Sets Integer type variables |
set_float_variable(const std::vector<FloatVariable> &variables) |
Sets Float type variables |
set_jpos_variable(const std::vector<JPosVariable> &variables) |
Sets JPos type variables |
set_tpos_variable(const std::vector<TPosVariable> &variables) |
Sets TPos type variables |
get_bool_variable()
Example
This function retrieves the current values of Bool type variables from the robot.
std::vector<Nrmk::IndyFramework::BoolVariable> bool_vars;
bool is_success = indy.get_bool_variable(bool_vars);
if (is_success) {
std::cout << "Bool variables retrieved successfully." << std::endl;
for (const auto &var : bool_vars) {
std::cout << "Address: " << var.addr() << ", Value: " << var.value() << std::endl;
}
} else {
std::cerr << "Failed to retrieve Bool variables." << std::endl;
}
get_int_variable()
Example
This function retrieves the current values of Integer type variables from the robot.
std::vector<Nrmk::IndyFramework::IntVariable> int_vars;
bool is_success = indy.get_int_variable(int_vars);
if (is_success) {
std::cout << "Integer variables retrieved successfully." << std::endl;
for (const auto &var : int_vars) {
std::cout << "Address: " << var.addr() << ", Value: " << var.value() << std::endl;
}
} else {
std::cerr << "Failed to retrieve Integer variables." << std::endl;
}
get_float_variable()
Example
This function retrieves the current values of Float type variables from the robot.
std::vector<Nrmk::IndyFramework::FloatVariable> float_vars;
bool is_success = indy.get_float_variable(float_vars);
if (is_success) {
std::cout << "Float variables retrieved successfully." << std::endl;
for (const auto &var : float_vars) {
std::cout << "Address: " << var.addr() << ", Value: " << var.value() << std::endl;
}
} else {
std::cerr << "Failed to retrieve Float variables." << std::endl;
}
get_jpos_variable()
Example
This function retrieves the current values of Joint Position (JPos) type variables from the robot.
std::vector<Nrmk::IndyFramework::JPosVariable> jpos_vars;
bool is_success = indy.get_jpos_variable(jpos_vars);
if (is_success) {
std::cout << "JPos variables retrieved successfully." << std::endl;
for (const auto &var : jpos_vars) {
std::cout << "Address: " << var.addr() << ", JPos: ";
for (const auto &jpos : var.jpos()) {
std::cout << jpos << " ";
}
std::cout << std::endl;
}
} else {
std::cerr << "Failed to retrieve JPos variables." << std::endl;
}
get_tpos_variable()
Example
This function retrieves the current values of Task Position (TPos) type variables from the robot.
std::vector<Nrmk::IndyFramework::TPosVariable> tpos_vars;
bool is_success = indy.get_tpos_variable(tpos_vars);
if (is_success) {
std::cout << "TPos variables retrieved successfully." << std::endl;
for (const auto &var : tpos_vars) {
std::cout << "Address: " << var.addr() << ", TPos: ";
for (const auto &tpos : var.tpos()) {
std::cout << tpos << " ";
}
std::cout << std::endl;
}
} else {
std::cerr << "Failed to retrieve TPos variables." << std::endl;
}
set_bool_variable()
Example
This function sets the values of Bool type variables in the robot.
std::vector<Nrmk::IndyFramework::BoolVariable> bool_vars;
Nrmk::IndyFramework::BoolVariable var1;
var1.set_addr(1);
var1.set_value(true);
bool_vars.push_back(var1);
bool is_success = indy.set_bool_variable(bool_vars);
if (is_success) {
std::cout << "Bool variables set successfully." << std::endl;
} else {
std::cerr << "Failed to set Bool variables." << std::endl;
}
set_int_variable()
Example
This function sets the values of Integer type variables in the robot.
std::vector<Nrmk::IndyFramework::IntVariable> int_vars;
Nrmk::IndyFramework::IntVariable var1;
var1.set_addr(2);
var1.set_value(42);
int_vars.push_back(var1);
bool is_success = indy.set_int_variable(int_vars);
if (is_success) {
std::cout << "Integer variables set successfully." << std::endl;
} else {
std::cerr << "Failed to set Integer variables." << std::endl;
}
set_float_variable()
Example
This function sets the values of Float type variables in the robot.
std::vector<Nrmk::IndyFramework::FloatVariable> float_vars;
Nrmk::IndyFramework::FloatVariable var1;
var1.set_addr(3);
var1.set_value(3.14f);
float_vars.push_back(var1);
bool is_success = indy.set_float_variable(float_vars);
if (is_success) {
std::cout << "Float variables set successfully." << std::endl;
} else {
std::cerr << "Failed to set Float variables." << std::endl;
}
set_jpos_variable()
Example
This function sets the values of Joint Position (JPos) type variables in the robot.
std::vector<Nrmk::IndyFramework::JPosVariable> jpos_vars;
Nrmk::IndyFramework::JPosVariable var1;
var1.set_addr(1);
var1.add_jpos(0.0f);
var1.add_jpos(0.0f);
var1.add_jpos(-90.0f);
var1.add_jpos(0.0f);
var1.add_jpos(-90.0f);
var1.add_jpos(0.0f);
jpos_vars.push_back(var1);
bool is_success = indy.set_jpos_variable(jpos_vars);
if (is_success) {
std::cout << "JPos variables set successfully." << std::endl;
} else {
std::cerr << "Failed to set JPos variables." << std::endl;
}
set_tpos_variable()
Example
This function sets the values of Tool Position (TPos) type variables in the robot.
std::vector<Nrmk::IndyFramework::TPosVariable> tpos_vars;
Nrmk::IndyFramework::TPosVariable var1;
var1.set_addr(1);
var1.add_tpos(350.0f);
var1.add_tpos(-186.5f);
var1.add_tpos(522.0f);
var1.add_tpos(-180.0f);
var1.add_tpos(0.0f);
var1.add_tpos(180.0f);
tpos_vars.push_back(var1);
bool is_success = indy.set_tpos_variable(tpos_vars);
if (is_success) {
std::cout << "TPos variables set successfully." << std::endl;
} else {
std::cerr << "Failed to set TPos variables." << std::endl;
}
Inverse Kinematics and Simulation Mode Related Functions
The IndyDCP3 C++ API provides functions for performing inverse kinematics, enabling/disabling direct teaching mode, setting simulation mode, and recovering the robot from error states.
Method | Description |
---|---|
inverse_kin(const std::array<float, 6> &tpos, const std::vector<float> &init_jpos, std::vector<float> &jpos) |
Calculates joint positions to reach a target workspace position |
set_direct_teaching(bool enable) |
Enables or disables direct teaching mode |
set_simulation_mode(bool enable) |
Enables or disables simulation mode |
recover() |
Recovers the robot from an error or collision state |
inverse_kin()
Example
std::array<float, 6> target_pose = {350.0, -186.5, 522.0, -180.0, 0.0, 180.0};
std::vector<float> init_jpos = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
std::vector<float> calculated_jpos;
bool is_success = indy.inverse_kin(target_pose, init_jpos, calculated_jpos);
if (is_success) {
std::cout << "Inverse kinematics successful. Joint positions: ";
for (float jp : calculated_jpos) {
std::cout << jp << " ";
}
std::cout << std::endl;
} else {
std::cerr << "Inverse kinematics failed." << std::endl;
}
set_direct_teaching()
Example
bool enable_direct_teaching = true;
bool is_success = indy.set_direct_teaching(enable_direct_teaching);
if (is_success) {
std::cout << "Direct teaching mode enabled." << std::endl;
} else {
std::cerr << "Failed to enable direct teaching mode." << std::endl;
}
set_simulation_mode()
Example
bool enable_simulation = true;
bool is_success = indy.set_simulation_mode(enable_simulation);
if (is_success) {
std::cout << "Simulation mode enabled." << std::endl;
} else {
std::cerr << "Failed to enable simulation mode." << std::endl;
}
recover()
Example
bool is_success = indy.recover();
if (is_success) {
std::cout << "Recovery successful." << std::endl;
} else {
std::cerr << "Recovery failed." << std::endl;
}
Program Control Functions
Program control functions allow you to start, pause, resume, and stop robot programs. These functions are essential for managing the execution flow of pre-written programs.
Method | Description |
---|---|
play_program(const std::string &prog_name, int prog_idx) |
Starts a program by name or index |
pause_program() |
Pauses the currently running program |
resume_program() |
Resumes a paused program |
stop_program() |
Stops the currently running program |
play_program()
Example
std::string program_name = "example_program.indy7v2.json";
int program_index = 1;
bool is_success = indy.play_program(program_name, program_index);
if (is_success) {
std::cout << "Program started successfully." << std::endl;
} else {
std::cerr << "Failed to start program." << std::endl;
}
pause_program()
Example
bool is_success = indy.pause_program();
if (is_success) {
std::cout << "Program paused successfully." << std::endl;
} else {
std::cerr << "Failed to pause program." << std::endl;
}
resume_program()
Example
bool is_success = indy.resume_program();
if (is_success) {
std::cout << "Program resumed successfully." << std::endl;
} else {
std::cerr << "Failed to resume program." << std::endl;
}
stop_program()
Example
bool is_success = indy.stop_program();
if (is_success) {
std::cout << "Program stopped successfully." << std::endl;
} else {
std::cerr << "Failed to stop program." << std::endl;
}
Using IndySDK
The IndyDCP3 C++ API provides functions to activate the IndySDK, set custom control modes, and manage control gains. These functions are crucial for advanced users who want to develop custom controllers.
Method | Description |
---|---|
activate_sdk(const SDKLicenseInfo &request, SDKLicenseResp &response) |
Activates the IndySDK |
set_custom_control_mode(bool mode) |
Sets the custom control mode |
get_custom_control_mode(int &mode) |
Retrieves the current custom control mode |
set_custom_control_gain(const CustomGainSet &gain_set) |
Sets custom control gain for the user controller |
get_custom_control_gain(CustomGainSet &gain_set) |
Retrieves the current custom control gain settings |
activate_sdk()
Example
Nrmk::IndyFramework::SDKLicenseInfo request;
request.set_license_key("YOUR_LICENSE_KEY");
request.set_expire_date("yyyy-mm-dd");
Nrmk::IndyFramework::SDKLicenseResp response;
bool is_success = indy.activate_sdk(request, response);
if (is_success) {
std::cout << "SDK Activated: " << (response.activated() ? "Yes" : "No") << std::endl;
std::cout << "Response Code: " << response.response().code() << ", Message: " << response.response().msg() << std::endl;
} else {
std::cerr << "Failed to activate SDK." << std::endl;
}
set_custom_control_mode()
and get_custom_control_mode()
Example
int mode = 0;
bool is_success = indy.set_custom_control_mode(mode);
if (is_success) {
std::cout << "Custom control mode set successfully." << std::endl;
} else {
std::cerr << "Failed to set custom control mode." << std::endl;
}
int get_mode;
bool is_success = indy.get_custom_control_mode(get_mode);
if (is_success) {
std::cout << "Custom control mode: " << get_mode << std::endl;
} else {
std::cerr << "Failed to get custom control mode." << std::endl;
}
set_custom_control_gain()
Example
Nrmk::IndyFramework::CustomGainSet gain_set;
gain_set.add_gain0(0.0);
gain_set.add_gain0(0.0);
gain_set.add_gain0(0.0);
gain_set.add_gain0(0.0);
gain_set.add_gain0(0.0);
gain_set.add_gain0(0.0);
bool is_success = indy.set_custom_control_gain(gain_set);
if (is_success) {
std::cout << "Custom control gain set successfully." << std::endl;
} else {
std::cerr << "Failed to set custom control gain." << std::endl;
}
get_custom_control_gain()
Example
Nrmk::IndyFramework::CustomGainSet gain_set;
bool is_success = indy.get_custom_control_gain(gain_set);
if (is_success) {
std::cout << "Custom control gains retrieved successfully." << std::endl;
for (int i = 0; i < gain_set.gain0_size(); ++i) {
std::cout << "Gain0: " << gain_set.gain0(i) << " ";
}
std::cout << std::endl;
} else {
std::cerr << "Failed to retrieve custom control gains." << std::endl;
}
Utility Functions
Utility functions provide additional features such as data logging and setting simulation mode.
Method | Description |
---|---|
start_log() |
Starts realtime data logging |
end_log() |
Ends and saves realtime data logging |
start_log()
and end_log()
Example
bool is_success = indy.start_log();
if (is_success) {
std::cout << "Started data logging." << std::endl;
}
// After some time...
is_success = indy.end_log();
if (is_success) {
std::cout << "Ended data logging and saved data." << std::endl;
}
These two functions are used for realtime data logging. Upon calling start_log(), the robot's data is stored in memory. After a certain period, calling end_log() stops the memory logging and writes it to a file within STEP. The realtime data logging file can be found at the following path:
/home/user/release/IndyDeployments/RTlog/RTLog.csv
For more detailed usage and advanced features, please refer to C++ client at Neuromeka Github repository.